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Abstract—Hypergraph clustering refers to the process of extracting maximally coherent groups from a set of objects using high-order
(rather than pairwise) similarities. Traditional approaches to this problem are based on the idea of partitioning the input data into a
predetermined number of classes, thereby obtaining the clusters as a by-product of the partitioning process. In this paper, we offer a
radically different view of the problem. In contrast to the classical approach, we attempt to provide a meaningful formalization of the
very notion of a cluster and we show that game theory offers an attractive and unexplored perspective that serves our purpose well. To
this end, we formulate the hypergraph clustering problem in terms of a noncooperative multiplayer “clustering game,” and show that a
natural notion of a cluster turns out to be equivalent to a classical (evolutionary) game-theoretic equilibrium concept. We prove that the
problem of finding the equilibria of our clustering game is equivalent to locally optimizing a polynomial function over the standard
simplex, and we provide a discrete-time high-order replicator dynamics to perform this optimization, based on the Baum-Eagon
inequality. Experiments over synthetic as well as real-world data are presented which show the superiority of our approach over the

state of the art.

Index Terms—Hypergraph clustering, evolutionary game theory, polynomial optimization, Baum-Eagon inequality, high-order

replicator dynamics

1 INTRODUCTION

CLUSTERING is the problem of organizing a set of objects
into groups, or clusters, in such a way as to have similar
objects grouped together and dissimilar ones assigned to
different groups, according to some similarity measure (for
a recent review, see [1]). The vast majority of approaches to
clustering available in the literature assume that object
similarities are expressed as pairwise relations, but in some
applications, such as, for example, face clustering [2],
perceptual grouping [3], and parametric motion segmenta-
tion [3], [4], image categorization [5], higher order relations
turn out to be more appropriate, and approximating them
in terms of pairwise interactions can lead to substantial loss
of information. As an illustrative example, taken from [2],
consider the problem of grouping a given set of
d-dimensional euclidean points into lines. As every pair
of data points trivially defines a line, there is no meaningful
pairwise measure of similarity for this problem. However,
it makes perfect sense to define similarity measures over
triplets of points that indicate how close they are to being
collinear. Clearly, this example can be generalized to any
model fitting problem, where the deviation of a set of
points from the model provides a measure of their
dissimilarity. The problem of data clustering using high-
order similarities is usually referred to as hypergraph
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clustering since we can represent any instance of this
problem by means of a hypergraph, where vertices are
the objects to be clustered and the (weighted) hyperedges
encode high-order similarities.

In the past few years, there has been increasing interest
around the hypergraph clustering problem in different
application areas such as computer vision, machine learn-
ing, and VLSI design. Zien et al. [6] proposed two
approaches called “clique expansion” and “star expansion,”
which transform the similarity hypergraph into an edge-
weighted graph whose edge-weights are a function of the
hypergraph’s original weights, thereby tackling the pro-
blem using standard pairwise algorithms. Bolla [7] defined
a Laplacian matrix for an unweighted hypergraph and
established a link between the spectral properties of this
matrix and the hypergraph’s minimum cut. Rodriguez [8]
achieved similar results by transforming the hypergraph
into a graph according to “clique expansion” and showed a
relationship between the spectral properties of a Laplacian
of the resulting matrix and the cost of minimum partitions
of the hypergraph. Zhou et al. [9] generalized their earlier
work on regularization on graphs and defined a hyper-
graph normalized-cut criterion for a k-partition of the
vertices, which can be achieved by finding the second
smallest eigenvector of a normalized Laplacian. This
approach generalizes the well-known “Normalized cut”
pairwise clustering algorithm [10]. In [2], we find another
work based on the idea of applying a spectral graph
partitioning algorithm on an edge-weighted graph which
approximates the original (edge-weighted) hypergraph. It is
worth noting that all these approaches, though designed to
deal with higher order relations, can easily be reduced to
standard pairwise approaches, as shown in [11]. A different
formulation is introduced in [4], where the clustering
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problem with higher order (supersymmetric) similarities is
cast into a nonnegative factorization of the closest hyper-
stochastic version of the input affinity tensor. Along similar
lines, in [3] a pairwise similarity matrix is derived from a
factorization of the input affinity tensor, which is then given
as input to standard spectral (graph) clustering techniques.
Finally, the leading tools in the field of VLSI design are
based on two-phase multilevel approaches [12]. In the first
phase, a hierarchy of hypergraphs is constructed where the
hypergraph at each level is a coarser version of the
hypergraph at the previous one according to some measure
of homogeneity. In the second phase, starting from a
partitioning of the coarsest level, the algorithm works its
way down the hierarchy and each level greedily updates
the partitioning obtained at the previous one.

All the approaches described above rely on the assump-
tion that the goal of the clustering algorithm is to assign
each data point to exactly one label denoting class member-
ship. In so doing, clusters are not modeled and sought
directly, but they are obtained as a by-product of a partition
of the input data into a predetermined number of classes.
This renders these approaches vulnerable to applications
where the number of classes is not known in advance or
where data is affected by clutter elements which do not
belong to any meaningful class. Indeed, there are various
applications for which it makes little sense to force all data
items to belong to some group, a process which might result
either in poorly coherent clusters or in the creation of extra
spurious classes. As an example, consider the classical
figure/ground separation problem in computer vision
which asks for extracting a coherent region (the figure)
from a noisy background [13], [14]. It is clear that, due to
their intrinsic nature, partitional algorithms have no chance
of satisfactorily solving this problem, being, as they are,
explicitly designed to partition all the input data, and hence
the unstructured clutter items too, into coherent groups.
More recently, motivated by practical applications arising
in document retrieval and bioinformatics, a conceptually
identical problem has attracted some attention within the
machine learning community (in the context of pairwise
relations) and is generally known under the name of one-
class clustering [15], [16]. Further, by adopting a partitional
approach, clusters are by definition disjoint sets. However,
there are a variety of important applications where this
requirement is too restrictive. Examples abound and
include, e.g., clustering microarray gene expression data
(wherein a gene often participate in more than one process),
clustering documents into topic categories, perceptual
grouping, and segmentation of images with transparent
surfaces. In fact, the importance of dealing with over-
lapping clusters was recognized long ago [17] and recently
there has been renewed interest around this problem [18],
[19]. Typically, this is solved by relaxing the constraints
imposed by crisp partitions in such a way as to have “soft”
boundaries between clusters.

In this paper, following [20], [21], we offer a radically
different perspective to the hypergraph clustering problem.
Instead of insisting on the idea of determining a partition of
the input data, and hence obtaining the clusters as a by-
product of the partitioning process, we reverse the terms of
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the problem and attempt instead to derive a rigorous
formulation of the very notion of a cluster. This allows
one, in principle, to deal with more general problems where
clusters may overlap and/or clutter points may get unas-
signed. The starting point of our approach is the elementary
observation that a “cluster” may be informally defined as a
maximally coherent set of data items, i.e., as a subset of the
input data C' which satisfies both an internal criterion (all
elements belonging to C should be highly similar to each
other) and an external one (all elements outside C should be
highly dissimilar to the ones inside). In our endeavor to
provide a formal definition of the notion of a cluster, we
found that game theory offers an elegant and general
perspective that serves our purposes well. The basic idea
behind our framework is that the hypergraph clustering
problem can be considered as a multiplayer noncooperative
“clustering game.” Within this context, the notion of a
cluster turns out to be equivalent to a classical equilibrium
concept from (evolutionary) game theory, as the latter
reflects both the internal and external cluster conditions
alluded to before. We also show that there exists a one-to-
one correspondence between these equilibria and the local
solutions of a linearly constrained polynomial optimiza-
tion problem, thereby generalizing the work described in
[20]. This characterization allows us to employ a powerful
class of dynamical systems to extract our clusters, based on
the well-known Baum-Eagon inequality, which generalize
classical (pairwise) replicator dynamics [22], [23] from
evolutionary game theory to higher order interactions. A
distinguishing feature of our approach is that, unlike
standard partitional techniques, we do not need to know
the number of clusters is advance as we extract them
sequentially. Experiments on various hypergraph clustering
problems show the superiority of the proposed approach
over state-of-the-art techniques.

The paper is organized as follows: In Section 2, we
provide a brief introduction to main concepts and results of
evolutionary game theory. Next, in Section 3, we formulate
the clustering problems as an evolutionary game and
provide support to the claim that its equilibria can be
considered as a natural formalization of the notion of a
cluster. In Section 4, we prove the polynomial optimization
characterization of our equilibria and describe an algorithm
to find them. In Section 5, we present our experimental
results, and Section 6 concludes the paper. Note that a
preliminary version of this paper appeared in [24].

2 NOTIONS FROM EVOLUTIONARY GAME THEORY

According to classical game theory [25], a game of strategy
can be formalized as a triplet I' = (P, S,n), where P =
{1,...,k} is a set of k>2 “players” (or agents), S =
{1,...,n} is a set of pure strategies (or actions) available to
each player,and 7 : S* — IR is a payoff function, which assigns
a utility to each strateqy profile s = (sy, ..., s;) € S¥, which is
an (ordered) set of pure strategies played by the different
players." A game T is supersymmetric if its payoff function is

1. We note that although we restrict ourselves to games where all players
share the same set of pure strategies and payoff function, in more general
settings each agent can well be associated to its own pure strategy set and
payoff function.
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supersymmetric, i.e., if it is invariant under permutations of
the strategy profile. In the sequel we will deal only with such
games and therefore we assume 7 to be supersymmetric.

Evolutionary game theory originated in the early 1970s as
an attempt to apply the principles and tools of game theory
to biological contexts, with a view to modeling the evolution
of animal, as opposed to human, behavior (see the classical
work by Smith [26] who pioneered the field). It considers an
idealized scenario whereby individuals are repeatedly
drawn at random from a large, ideally infinite, population
to play a game I' = (P, S, 7). In contrast to classical game
theory, here players are not supposed to behave rationally or
to have complete knowledge of the details of the game. They
act instead according to an inherited behavioral pattern, or
pure strategy, and it is supposed that some evolutionary
selection process operates over time on the distribution of
behaviors. Here, and in the sequel, an agent with preas-
signed strategy j € S will be called j-strategist. The state of
the population at a given time ¢ can be represented as an
n-dimensional vector x(t), where xz;(t) represents the
fraction of j-strategists in the population at time ¢. Hence,
the initial distribution of preassigned strategies in the
population is given by x(0). The set of all possible states
describing a population is given by

A_{xelR” : ij_landszOforalljeS},

jes

which is called standard simplex. As time passes, the
distribution of strategies in the population changes under
the effect of a selection mechanism which, by analogy with
Darwinian process, aims at spreading the fittest strategies in
the population to the detriment of the weakest one which,
in turn, will be driven to extinction (we postpone the
formalization of one such selection mechanism to Section 4).
For notational convenience, we drop the time reference ¢
from a population state and we refer to x€ A as a
population rather than population state. Moreover, we
denote by o(x) the support of x € A:

ox)={j€S5 : z; >0},

which is the set of strategies that are alive in a given
population x.

We will find it useful to define the following function
u: AP — R:

u(y(l),...,y(k)> -

(8150-y81) ESH

k
w(st, s [Jo . (1)
=1

which is invariant under any permutation of its arguments
due to the supersymmetry of the payoff function m. Also, we
will use the notations x/"l as a shortcut for a sequence
(x,...,x) of k identical states x, and e’ to indicate the
n-vector with z; = 1 and zero elsewhere. Now, it is easy to
see that the expected payoff earned by a j-strategist (j € S) in
a population x € A is given by wu(e/,x*71), while the
expected payoff over the entire population is given by u(x/").

A fundamental notion in game theory is that of an
equilibrium [22]. Intuitively, an evolutionary process
reaches an equilibrium x € A when every individual in
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the population obtains the same expected payoff and no
strategy can thus prevail upon the other ones. Formally,
x € A is a Nash equilibrium if

u(ej, x[k_l]) < u(x[k]> ,

In other words, at a Nash equilibrium every agent in the
population performs at most as well as the overall
population expected payoff. Within a population-based
setting, however, the notion of a Nash equilibrium turns out
to be too weak as it lacks stability under small perturbations.
This motivated J. Maynard Smith, in his seminal work [26],
to introduce a refinement of the Nash equilibrium concept
generally known as an Evolutionary Stable Strategy (ESS).
His original work involved pairwise interactions (two-
player games), but his notion was later generalized to
multiplayer games [27]. Formally, assume that in a popula-
tion x € A, a small share € of mutant agents appears whose
distribution of strategies is y € A. The resulting postentry
population is then given by w, = (1 — €)x + €y. Biological
intuition suggests that evolutionary forces select against
mutant individuals if and only if the expected payoff of a
mutant agent in the postentry population is lower than that
of an individual from the original population, i.e.,

u(y, wyﬂfl]) < u(x, wyﬂfl]) . (3)

Hence, a population x € A is said to be evolutionary stable if
inequality (3) holds for any distribution of mutant agents
y € A\ {x}, granted the population share of mutants ¢ is
sufficiently small. It can be shown that an ESS is a
refinement of the notion of a Nash equilibrium in the sense
that every ESS is necessarily a Nash equilibrium (see [22] for
pairwise contests and [27] for k-wise contests).

We end this section with a result which provides a
characterization of ESSs that will be instrumental in the
discussion that follows.

forall j € S. (2)

Lemma 1. Let ' = (P, S, m) be a k-player supersymmetric game.
Then, x € Ais an ESS if and only if for all y € A\ {x} there
exists i € {0, ...,k — 1} such that both conditions

u{(y —x [i+1]’x[k717i] <0, 4
(v-x

u((y - x)[“l],x[k_l_é]) =0, forall0</<i, (5)

are satisfied.

Proof. We will prove a slightly different statement which,

however, implies the result. We will show that for all

y € A\ {x}, inequality (3) holds if and only if there

exists ¢ € {0,...,k — 1} such that conditions (4) and (5)
are satisfied.

Let y € A\ {x}. By rewriting w. = ¢ (y — x) + x and

by exploiting the multilinearity and supersymmetry of u
we have that

u(y, W£k_1]) B U(X’ WLk_l]) = u(y - x, W[f"”)
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Let ¢ be the index of the first nonzero term of the
summation in (6) (or, in other words, assume that (5)
holds). Then,

U (y, wy"fl]) —u (x, kail])

E—1\ . : ) .
— ( . )e’u((y _ X)[L+1]7X[k—177]) + O(EZ+1).
i
Note that this quantity is negative for all sufficiently
small values of ¢ if and only if ¢ < k and condition (4)
holds, from which the result follows. a

3 THE HYPERGRAPH CLUSTERING GAME

An instance of the hypergraph clustering problem can be
described by an edge-weighted hypergraph [28], which is
formally defined as a triplet H = (V,E,w), where V =
{1,...,n} is a finite set of vertices, E C 2"\ {()} is the set of
(hyper)edges (here, 2V is the power set of V), and w: E —
IR, is a real-valued function which assigns a positive
weight to each edge. Within our clustering framework, the
vertices in H correspond to the objects to be clustered, the
edges represent (possibly) high-order neighborhood rela-
tionships among objects, and the edge-weights reflect
similarity among linked objects. Although hypergraphs
may have edges of varying cardinality, in this paper we will
focus on a particular class of hypergraphs, called k-graphs,
whose edges have fixed cardinality k£ > 2 (clearly, if k£ =2
we get back to the standard notion of a graph). Note that,
for simplicity, here we restrict ourselves to positive
similarities, although the proposed framework can easily
be generalized to deal with negative weights as well.

Given a weighted k-graph H = (V, E,w), representing an
instance of a hypergraph clustering problem, we cast it into
a k-player (hypergraph) clustering game T' = (P,V, 1) where
the players’ pure strategies correspond to the objects to be
clustered and the payoff function 7 is proportional to the
similarity of the objects/strategies (vi,...,v;) € V* selected
by the players:

1 .
7-[-(1;17. . 71)]{) = {Hw({vlv s 7’0]9}), if {Ulv* . 7U1€} €L,

0, otherwise.
(7)

Here, the constant of proportionality 1/k! has been chosen
to simplify later algebraic derivations.

Our clustering game will be played within an evolutionary
setting wherein the & players, each of which is assumed to
play a preassigned strategy, are repeatedly drawn at random
from a large population. Here, given a population x € A, z;
(j € V) represents the fraction of players that is programmed
to select j from the objects to be clustered. A dynamic
evolutionary selection process, as the one described in the
next section, will then make the population x evolve,
according to a Darwinian survival-of-the-fittest principle, in
such a way that, eventually, the better-than-average objects
will survive and the others will become extinct. It is clear that
the whole dynamical process is driven by the payoff function
m, which, in our case, has been defined in (7) precisely to favor
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the evolution of highly coherent objects. Accordingly, the
support o(x) of the converged population x does represent a
cluster, the nonnull components of x providing a measure of
the degree of membership of its elements. Indeed, the
expected population payoff u(x*) can be regarded as a
measure of the cluster’s internal coherency in terms of the
average similarity of the objects forming the cluster, whereas
the expected payoff u(e’,x/*~!) of a player selecting object
j € V in x measures the average similarity of object j with
respect to the cluster.

We claim that, within this setting, the clusters of a
hypergraph clustering problem instance can be character-
ized in terms of the ESSs of the corresponding (evolutionary)
clustering game, thereby justifying the following definition.

Definition 1 (ESS-Cluster). Given an instance of a hypergraph
clustering problem H = (V, E,w), an ESS-cluster of H is an
ESS of the corresponding hypergraph clustering game.

For the sake of simplicity, when it will be clear from
context the term ESS-cluster will be used henceforth to refer
to either the ESS itself, namely, the membership vector
x € A, or to its support o(x) =C C V.

The motivation behind the above definition resides in the
observation that ESS-clusters do incorporate the two basic
properties of a cluster, i.e.:

e [nternal coherency. Elements belonging to the cluster
should have high mutual similarities.

e  External incoherency. The overall cluster internal
coherency decreases by introducing external
elements.

The rest of this section is devoted to provide support to
this claim.

3.1 Internal Coherency

The internal coherency of an ESS-cluster is a direct
consequence of the Nash condition (2), which is satisfied
by any ESS. Indeed, if x € A is an ESS of a clustering game,
then from (2) it follows that every object belonging to the
cluster, i.e., every object in o(x), has the same average
similarity with respect to the cluster, which in turn
corresponds to the cluster’s overall average similarity. This
is formally stated in the following theorem.

Theorem 1. Let H = (V, E,w) be an instance of a hypergraph
clustering problem, and T'= (P,V,n) the corresponding
clustering game. If x € A is an ESS-cluster of H, with
support o(x) = C, then

u(ej,x[kfl]) = u(x[k]) R

Proof. Since an ESS is a Nash equilibrium, it follows from
(2) and by the multilinearity of u that

u(ej,x[k_l]) < u(x[k]) = Zu(ee,x[k_1]>x[

lev

= Z U ef,x[k_l])x/j

leo(x)

forall j € C. (8)

forall je V.

Since the right-hand side of this equation is a convex
linear combination we have that



Fig. 1. Example of a three-graph with five nodes (circles) and four edges
(rectangles), represented as a bipartite graph. Each edge is connected
to the vertices it contains.

u(ej*,x[k’_”) < Z u(eﬁx[k_l])wf,
)

leo(x

< u(ej*, x[k”]) forall j €V,

where j* € arg max;c,u(e’,x*~1). Hence,

u(ej* 7 Xw«—u) - U(Xw)

which holds if and only if (8) holds. O

The internal coherency of an ESS-cluster becomes clearer
if we analyze it using a notion from hypergraph theory. Let
H = (V,E,w) be a (weighted) hypergraph and C' C V. We
say that C'is a two-cover of H if for any pair of vertices {4, {} C
C there exists an edge e € E such that {j,¢} C e C C. Note
that if H is a graph (i.e., k = 2), then two-covers correspond
to cliques, namely, to sets of mutually adjacent vertices. To
illustrate, in the hypergraph shown in Fig. 1 the sets
{1,2,3,4,5} and {1,2,4,5} are not two-covers as there is
no edge contained in them connecting vertices {1,3} and
{1, 4}, respectively, while the set {2, 3,4, 5} is a two-cover.

The following proposition, which is a weighted counter-
part of a result by Frankl and Rodl [29] on unweighted
hypergraphs, provides an interesting connection between
ESS’s and two-covers.

Proposition 1. Let H = (V, E, w) be an instance of a hypergraph
clustering problem and T' = (P,V,w), the corresponding
clustering game. If x € A is an ESS-cluster of H, then its
support o(x) is a two-cover of H.

Proof. Let C'= o(x) be the support of x and suppose, by
contradiction, that C is not a two-cover. Then, there exist
p,q € C such that for all e € E either {p,q} ZeoreZ C.
Let z. = € (e — €%) + x, where 0 < € < z,. We will show
that u((z. — x)", x*1) = 0, foralli € {1,...,k}, and this,
by Lemma 1, contradicts the fact that x is an ESS, thereby
proving the result.

Indeed, by the multilinearity and the supersymmetry
of u and by (7) we have that

u((zf - X)[i]’x[k—i]) _ Eiu((ep _ eq)[i]7x[k_7;])
=¢ Z ( ;) (_1)1‘7}%((81))[/1]7 (eq)[i—h]7 x“‘""’])
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foralli € {1,...,k}. We proceed now by enumerating all
possible cases.

Case 7 =1: Since x is an ESS, it is also a Nash
equilibrium. Hence, by (8):

u((ep — eq)7x[k71]) =0,

and, therefore, u((z, — x),x/*!) = 0.
Case i > 2. By (7), we have

w(p[h’],q[ifh’], Sty - ,sk,i) =0, forallhe{0,...,i},
because {p/", q~" s1,... s, ;} ¢ E and, therefore,
u((z — %) x1) = 0.

Case i = 2. By (7) and by noting that m(pl", ¢~ s,
...y 8k—2) =0 for h € {0,2}, (9) can be simplified as

u((z6 — X)[i],x[kﬁ]) = —2¢ Z w(e) Hze

ecll lee
{p.q}Ce

= —2¢ Z w(e)H:cg,
eCC lee
{p.a}Ce

which is zero because, by hypothesis, there is no edge
contained in C' which also contains both p and g. O

Intuitively, the previous result shows that two objects
cannot belong to (the support of) an ESS-cluster if there is
no similarity relationship between them within the cluster.
This is a minimal property that a cluster should satisfy in
order to guarantee some form of internal coherency.

3.2 External Incoherency

In addition to the internal coherency property described
above, we now show that ESS-clusters also satisfy a
property of external incoherency. This follows, in the first
place, from the Nash condition (2) that we already used to
prove internal coherency. In fact, according to (2), every
object external to an ESS-cluster C' has an average similarity
with respect to C that cannot exceed the cluster’s overall
similarity. More formally, if x € A is a Nash equilibrium
with support o(x) = C, we have

u(e-’v7 x[kfl]) < u(xm) ,

However, the Nash condition alone is not enough, as there
may still be cases where the average similarity of an
external object equals the cluster’s overall similarity, there-
by violating the external incoherency criterion. As it turns
out, to some extent, this cannot be the case with an ESS,
thanks to its additional stability properties.

forall j ¢ C.

Theorem 2. Let H = (V, E,w) be an instance of a hypergraph
clustering problem and T = (P,V,m) the corresponding
clustering game. Then, x € A is an ESS-cluster of H if and
only if for any y € A\ {x} and all sufficiently small positive
values of e the following inequality holds:

u(w@) < u(x[k]) R

where w, = (1 —e)x +ey.
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Proof. We will prove a slightly different statement which, in
conjunction with Lemma 1, implies the result. We will
show that for all y € A\ {x}, there exists i € {0,...,k —
1} such that conditions (4) and (5) hold if and only if
u(wy"]) < u(x") for all sufficiently small values of .

Let y € A\ {x}. By rewriting w. = ¢ (y — x) + x and
by exploiting the multilinearity and super-symmetry of u
we have

o) o) = {5 (o2
_ u(xm)

i(ﬂ k )e[“u((y _ X)[ZH]7 X[k—l—/./]).
+1

=0
(10)

Let ¢ be the index of the first nonzero term of the
summation in (10) or, in other words, assume that (5)
holds. Then,

u(w£k1> — u(x[kl) _ (Z i 1>ei+1u<(y _ X)[Hl],x[k*l*i])
+ O(EHQ),

Note that this quantity is negative for all sufficiently
small values of ¢ if and only if ¢ < k and condition (4)
holds, from which the result follows. O

The previous theorem asserts that whenever we try to
deviate from an ESS-cluster x € A, e.g., by adding an
external element to its support, the cluster’s overall average
similarity drops, provided that deviation is not too large.
This not only guarantees a form of external incoherency, but
also provides support to the claim that the components of x
reflect the degree of cluster membership.

Observe that when the number of players k equals 2, i.e.,
in the presence of pairwise similarities, our notion of ESS-
cluster coincides with that of a dominant set [20], [21],
which is a generalization of a maximal clique to the case of
edge-weighted graphs. In this case, a stronger notion of
external incoherency holds, which asserts that no dominant
set can be a subset of another. In the case of higher order
similarities, however, there is no theoretical guarantee that
the support of an ESS is not contained in that of another
one. Indeed, in [27], it is shown that such solution patterns
might possibly appear in general games with more than two
players (i.e., k > 2). To evaluate how often this happens, we
conducted a systematic experimental study over all the
hypergraphs used in the experiments described in Section 5.
Overall, we got 1,510 hypergraphs ranging from 60 to 5,000
vertices. By starting the dynamics described in the next
section with 50 randomly chosen initial vectors, we tried to
enumerate (at least partially) the ESS-clusters of each
hypergraph. Upon convergence, we checked whether the
support of any two distinct solutions found had nested ESS-
supports. In all 75,500 trials this never happened, thereby
suggesting the claim that the existence of nested ESS-
clusters appears to not be an issue in practice.

4 EvoLUTION TOWARD A CLUSTER

In this section, we address the issue of determining an ESS-
cluster for a given instance of a hypergraph clustering
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problem. Unfortunately, this turns out to be a computa-
tionally hard problem [30], [31], but good heuristics do
exist. Indeed, we show below that the ESSs of a clustering
game are in one-to-one correspondence with (strict) local
solutions of a nonlinear optimization problem, thereby
allowing the use of standard optimization techniques.

Theorem 3. Let H = (V,E,w) be a hypergraph clustering
problem, T' = (P,V,w) the corresponding clustering game,
and f(x) a function defined as

f(x) = u(x[k]) = Zw(e) Hacj.

eck je€e

(11)

Nash equilibria of T' are in one-to-one correspondence with
the critical points® of f(x) over A, while ESSs of T' are in
one-to-one correspondence with strict local maximizers of
f(x) over A.

Proof. To prove the first part of the theorem, recall that by
the definition of critical (KKT) point [32], for all j €V,
there exist u; > 0 and A € IR such that

1 S
V) +pj— A= %u<e],x[l"71]) +p;—A=0 and
Hzj =0,

where V is the gradient operator. By multiplying both
sides of these equations by the corresponding z; and
summing up, it follows that A = u(x/")/k and hence,
from the nonnegativity of the s s, u(e/,x/F~1) < u(x")
forall jeV.

To prove the second part, note that by definition a
strict local maximizer of f over A (say, x) satisfies
u(y™) = f(y) < f(x) = u(x"), for all y € A\ {x} close
enough to x, which is in turn equivalent to the condition
of Theorem 2 for all sufficiently small values of e. 0

The problem of extracting ESS-clusters can thus be cast
into the problem of finding a strict local solutions of (11) in
A. We will address this optimization task using a well-
known result due to Baum and Eagon [33], who introduced
a wide class of nonlinear transformations in probability
domain. Their result generalizes an earlier one by Blakley
[34], who discovered similar properties for certain homo-
geneous quadratic transformations. The next theorem
introduces what is known as the Baum-Eagon inequality.’

Theorem 4 (Baum-Eagon). Let Q(x) be a homogeneous
polynomial in the variables x; with nonnegative coefficients,
and let x € A. Define the mapping z = M(x) from A to itself
as follows:

- IOQ(X)/ -

j j ,
Ox;

2+, 29

8:@

ji=1,...,n. (12)

(=1

Then, Q(M(x)) > Q(x), unless M(x) = x.

2. A point x is said to be a critical (or a KKT) point of an optimization
problem if it satisfies the first-order necessary conditions for being a
solution [32].

3. Indeed, the original Baum-Eagon inequality is more general than
presented here as it deals with a maximization problem over a product of
simplices.
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Although this result applies to homogeneous polyno-
mials, in a subsequent paper Baum and Sell [35] proved that
Theorem 4 still holds in the case of arbitrary, nonhomoge-
neous polynomials and further extended the result by
showing that M increases  homotopically, which means
that for all 0 <n <1, Q(nM(x)+ (1 —n)x) > Q(x) with
equality if and only if M(x) =

Another way of looking at Theorem 4 is from the
standpoint of dynamical systems theory [36], [37]. The
nonlinear operator M defines, in fact, a discrete dynamical
system and it is therefore of particular interest to study how
it behaves in the vicinity of its equilibrium points. In the
theory of dynamical systems, this is formalized by the
concept of stability. An equilibrium point x is said to be
stable if, whenever started sufficiently close to x, the system
will remain near to x for all future times. A stronger
property, which is even more desirable, is that the
equilibrium point x be asymptotically stable, meaning that
x is stable and in addition is a local attractor, i.e., when
initiated close to x, the system tends toward x as time
increases. One of the most fundamental tools for establish-
ing the stability of a given equilibrium point is known as
Lyapunov’s direct method. It involves seeking a so-called
Lyapunov function, i.e., a continuous real-valued function
defined in state space which is nondecreasing along any
trajectory. Of particular interest are strict Lyapunov func-
tions which are, instead, strictly increasing along noncon-
stant trajectories. Accordingly, Theorem 4 essentially states
that the polynomial @ is a Lyapunov function for the
discrete-time dynamical system defined by M.

The Baum-Eagon inequality therefore provides an
effective iterative means for maximizing polynomial func-
tions in probability domains, and in fact it has served as the
basis for various statistical estimation techniques developed
within the theory of probabilistic functions of Markov
chains [38]. It has also been employed for studying the
dynamical properties of relaxation labeling processes [39].
Note that, even in the presence of negative coefficients, it is
still possible to use the Baum-Eagon theorem, and hence the
corresponding dynamical system by applying a simple
transformation to the original polynomial which does
preserve the original solutions. This could be useful, for
example, when the edge-weights in the hypergraph encode
both similarity and dissimilarity information.

Now, let us go back to our clustering problem. Note that
the function f defined in (11) is precisely a homogeneous
polynomial with nonnegative coefficients and hence the
Baum-Eagon theorem applies. In this case, we have

of(x) _ 1 J o lk—1]
8:rj _Eu(e’x )7

j=1...n,

which yields

S5 20 1,
= ¢ 6:@ k

()
so that the proposed discrete-time dynamics to extract an
ESS-cluster takes the following form:

u(ej,x(t)[k_l])

(@)

$J(t+1) :J}](t) ]: 1n (13)
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This dynamic can be given a natural evolutionary inter-
pretation, and in fact generalizes a classical formalization of
natural selection processes in two-player evolutionary game
theory [22], [23], known as “replicator dynamics.” To see
this, recall that u(e’, x*~!)) represents the expected payoff of
an i-strategiest in population x, while u(x/"') represents the
expected payoff over the entire population. Hence, during
the evolution of (13), better-than-average strategies, i.e.,
those satisfying u(e’,x/*~!1) > u(x/"), will spread in the
population while the others will become extinct, therefore
giving rise to a Darwinian selection process.

From Theorem 4, we can assert that f is a strict
Lyapunov function for this dynamical system and this, in
conjunction with the fact that every ESS-cluster is a strict
local maximizer of f in A, proves the following theorem
which is an obvious consequence of Lyapunov’s theorem of
asymptotically stability [36], [37].

Theorem 5. A point x € A is an ESS-cluster of an instance of a
hypergraph clustering problem if and only if it is an
asymptotically stable equilibrium point (and, hence, a local
attractor) for the nonlinear dynamics (13).

In practical applications, without heuristic information
about the optimal solution, it is customary to start out the
dynamics from the barxcenter of the simplex, i.e., from the
vector x(0) = (£, .. € A, which is the uniform distri-
bution over the set of Vertlces V. This choice ensures that no
particular solution is favored. Moreover, the dynamics (13)
satisfies the invariant property o(x(t)) C o(x(0)) for any
time ¢ > 0. Hence, in order to allow any vertex i € V to
potentially take part of a solution, we need to select an
initial state x(0) with full support, ie., o(x(0))=V. In
particular, if the numerator of (13) is positive for all
J € 0(x(0)), then o(x(t)) = o(x(0)) for all finite values of t >
0 and only asymptotically might we possibly have
o(x*) C o(x(0)), x* being the limit point of the trajectory,
namely, x* = lim . x(t). This fact suggests that given a
solution x(7") obtained after 7' < oo steps of (13), we need to
threshold its components in order to get the support of the
corresponding ESS-cluster. Observe also that the compo-
nents of an ESS-cluster x provide information about the
degree of membership of each element to the cluster (which
could be useful, e.g., to extract a representative of the
cluster found).

Unlike standard partitional techniques, our approach
involves extracting one cluster at a time, much in the same
spirit as [20], [40], [41]. Depending on the application at
hand, one might want to obtain either overlapping or
nonoverlapping clusters. In the latter case, a simple, yet
effective “peel-off” strategy, which has also been used in the
experiments reported below, can be as follows: 1) Find an
ESS-cluster with dynamics (13), 2) remove its vertices from
the hypergraph, 3) reiterate on the remaining vertices.
Alternatively, in order to extract overlapping groups one
needs to enumerate the ESS-clusters. In this paper, we do
not address this issue, but we mention that a possible
strategy to accomplish this has been proposed in [42],
although restricted to the standard pairwise case.

Finally, as pointed out in [35], note that our dynamics
(13) contrasts sharply with gradient methods, for which an
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increase in the objective function is guaranteed only when
infinitesimal steps are taken, and determining the optimal
step size entails computing higher order derivatives. We
add that performing gradient ascent in A requires some
projection operator to ensure that the constraints not be
violated, and this might cause some problems for points
lying on the boundary [43], [44]. In (13), instead, a
computationally simple row normalization is required.
Overall, the complexity of finding an ESS-cluster with our
algorithm turns out to be O(p|E|), where |E| is the number
of edges of the hypergraph and p is the average number of
iteration needed to converge. In the experiment reported
below, p never exceeded 100. More efficient algorithms to
extract ESS-clusters can well be developed, e.g., along the
lines suggested in [45] and [46] for quadratic optimization.

5 EXPERIMENTS

To test the effectiveness of the proposed approach, we
conducted experiments on synthetic as well as real-world
data. We compared our approach against two of the most
powerful hypergraph clustering algorithms available in the
literature, namely, the Clique Averaging algorithm
(CAVERAGE) of Agarwal et al. [2], and the Supersymmetric
Nonnegative Tensor Factorization (SNTF) of Shashua et al.
[4]. Note that in [2] CAVERAGE was shown to outperform
consistently several existing hypergraph clustering techni-
ques such as Clique Expansion combined with Normalized
cuts [47], Gibson’s Algorithm under sum and product
model [48], the two-phase multilevel algorithm kHMeTiS
[12], and therefore we decided not to include them in our
experimental comparisons. Note also that, unlike CAVER-
AGE, which resorts to a pairwise approximation of the
high-order similarity function, SNTF works directly on the
hypergraph as we do.

Since both CAVERAGE and SNTF, in contrast to our
method, require as a parameter the number of clusters K,
we run them with values of K € {K*—1,K* K*+1},
where K* denotes the correct number of clusters. As, in
practical application, the optimal number of clusters is not
known in advance, this allowed us to assess the robustness
of the approaches in the presence of under and over-
estimation of the correct number of clusters.* As concerns
the other free parameters of all competing algorithms, they
were optimally tuned using a small validation set which
consisted of a set of labeled observations sampled from the
same distribution as that used in the testing phase. As for
our algorithm, we used the peel-off strategy described in
the previous section. The quality of the clusterings found by
the different algorithms was evaluated in terms of
classification error with minimum-cost bipartite matching
except for the experiment in Section 5.3, where a different
evaluation protocol has been adopted (see the description in
the section).

We run all the experiments on an AMD Sempron 3 Ghz
computer equipped with a 4 Gb RAM. In the case of
CAVERAGE and SNTF, we used the original codes as

4. Note that running any clustering algorithm with K < K* prevents it
from achieving perfect results. However, we think that the experiments
presented with K = K* — 1 do indeed provide some interesting information
concerning the algorithms” behavior.
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provided by the authors (Matlab and C++ implementations,
respectively). For our algorithm, we used a nonoptimized
Matlab implementation. As for running time, we report that
our algorithm typically took 100 seconds or so to converge,
CAVERAGE was an order of magnitude faster, while SNTF
was an order of magnitude slower. This is indeed to be
expected as CAVERAGE, unlike our algorithm and SNTF,
transforms the original hypergraph into a graph at the
outset, thereby greatly reducing the complexity of the
problem. On the other hand, like our algorithm, SNTF does
not resort to any graph approximation, but, by optimizing a
single variable at a time, it has a substantially larger
computational complexity.

5.1 Line Clustering

Here, we consider the problem of clustering lines in spaces
of dimension greater than two, i.e., given a set of points in
IR?, the task is to extract subsets of collinear points. This is a
typical example where classical pairwise approaches cannot
work because any pair of points defines a straight line, and
hence higher order similarity relations are needed (see, e.g.,
[2]). An obvious ternary similarity measure for this
clustering problem can be defined as follows: Given a
triplet of points {i,j,k} and its best fitting line ¢, we
calculate the mean distance d(i, j, k) between each point and
¢, and then we obtain a similarity function using a standard
Gaussian kernel: w({i, j, k}) = exp(—pd(, j, k)Q), where (3 is
a properly tuned precision parameter.

In order to assess the robustness of the competing
approaches to both local and global perturbations, we
conducted two kinds of experiments. In the first set of
experiments, we generated a few lines (from 3 to 5) in a 5D
space [—2,2]°. Each line consisted of 20 points, which were
locally perturbed using a varying amount of Gaussian noise,
namely, from 0 =0 to o =0.08 (see Fig. 2a for a specific
example). Figs. 2b, 2¢, and 2d show the results obtained by
the competing algorithms in terms of classification error
with three, four, and five lines, respectively, as a function of
the noise level. Each plot shows the average performance
obtained over 30 randomly generated instances together
with the corresponding standard deviations.

In the first place, note that our algorithm performs
essentially as well as the best performing parameterization
of SNTF on all instances with a level of noise not exceeding
0.04. As for CAVERAGE, note that even using the correct
number of clusters K = K*, its performances gradually
deteriorate as the number of lines is increased. In all cases,
both SNTF and CAVERAGE are systematically outper-
formed by our algorithm when they are run with a
nonoptimal value of K. We also observe that when
K = K* — 1, the error of CAVERAGE and SNTF is expected
to decrease significantly as we increase K*, e.g., when we
use five instead of four lines, while this does not happen,
thereby suggesting that they do not achieve the best
possible result here. Further, as expected, the influence of
local noise on their performance is typically negligible.
Indeed, this makes intuitively sense as, once they stick to a
partition of the original input data, it is unlikely that the
result will change drastically under moderate local
perturbations. On the other hand, our approach appears
to be slightly more vulnerable to local perturbations as
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Fig. 2. Results of clustering three, four, and five lines perturbed locally with increasing levels of Gaussian local noise (o = 0,0.01,0.02,0.04, 0.08).

(a) Example of three 5D lines (projected in 2D), perturbed with o = 0.04. (b) Three lines. (c) Four lines. (d) Five lines.

points deviating too much from a cluster’s average
collinearity will get excluded, by construction, as they
undermine internal coherency.

The second series of experiments aimed at assessing
robustness to clutter (global noise). To this end, we
randomly generated a few lines (in our experiments, from
2 to 4) in the 5D hypercube [~2,2]°, and then added from 0
to 40 clutter points uniformly drawn from the hypercube
(see Fig. 3a for a specific example). In order to make the
setting more realistic, we also slightly perturbed the original
lines using a local Gaussian noise with standard deviation
0.01. As in the previous set of experiments, each generated
line consisted of 20 points.

Figs. 3b, 3¢, and 3d show the results obtained by all
algorithms as a function of clutter. As can be clearly seen,
our algorithm substantially outperformed both CAVERAGE
and SNTF even when they were fed by the correct number
of clusters K*, and it worked almost perfectly irrespective
of the clutter level. Note also that both competitors achieved
better performances when K > K*, and this is intuitively
clear as the only way to get rid of clutter points is to group
them into additional (garbage) clusters. Nevertheless, due
to the intrinsic unstructured nature of clutter points, they
typically did not get assigned to the garbage class, but,
instead, were associated to the original groups, thereby
making the performance of CAVERAGE and SNTF poorer
and poorer as clutter increases.

5.2 Plane Clustering

In this section, we take a step further and increase the
complexity of the previous series of experiments by
clustering 3D points into planes rather than lines. Since
any three points uniquely identify a plane, here we need to
use (at least) a quaternary similarity measure. In our
experiments, we adopted essentially the same measure
used above, namely, we measured the deviation from
coplanarity of four points {7, j,k, ¢} by using their mean
distance d(i, j, k,¢) from the best fitting plane, and then
transformed this into a similarity measure using a
Gaussian kernel.

In a first series of experiments we assessed the robust-
ness of the different approaches to local noise by randomly
generating datasets with two, three, and four planes in the
cube [-2,2]°. This time, to make the problem more
challenging, we forced the generated planes to pass through
the origin, thereby increasing the possibility of classification
errors (especially around the origin). Each plane consisted
of 15 points, each of which was perturbed according to
increasing levels of Gaussian noise, from ¢ = 0 to o = 0.08.
Fig. 4a shows an example with three planes.

Figs. 4b, 4c, and 4d report the classification error
obtained by the three algorithms on 10 different trials as a
function of noise level (with corresponding standard
deviations). From the results obtained, it is clear that this
problem is harder than the previous one. While our
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Fig. 3. Results of clustering two, three, and four lines with an increasing number of clutter points (0, 10, 20, 40). (a) Example of two 5D lines (projected

in 2D) with 40 clutter points. (b) Two lines. (c) Three lines. (d) Four lines.

approach is outperformed in the two-planes experiment by
both CAVERAGE and SNTF, especially in the presence of
substantial noise, it compares favorably as the level of
complexity increases, exhibiting dramatically better results
with four planes. As in the previous set of experiments, note
that when the parameter K is less than the correct one (K*),
then both CAVERAGE and SNTF perform poorly.

As before, with the second series of experiments we
aimed at assessing robustness against global noise. After
generating (slightly perturbed) sets of 15 coplanar points in
[~2,2]°, we added up to 40 uniformly generated clutter
points (see Fig. 5 for an example). The results obtained
using two, three, and four planes are reported in Figs. 3b,
3c, and 3d. As in the line clustering experiment, our
approach dramatically outperforms the competitors due to
their intrinsic inability to get rid of clutter. Also, unlike the
previous experiment, our algorithm appears to be less
sensitive to the level of clutter than CAVERAGE and SNTF.

5.3 Model-Based 3D Point-Pattern Matching

We present here a different type of experiment, which
highlights the advantages of our approach over the existing
partition-based ones. We consider the problem of finding in
a scene (possibly multiple) copies of a reference 3D model
subject to a similarity transformation (i.e., rescaling +
rotation + translation). Here, both the model and the scene
are represented as clouds of 3D points. Motivated by the

approach described in [49] (which deals with pairwise
relations only), here we tackle this problem from a
hypergraph clustering perspective.

Let M be a set of 3D points representing the model to be
found and let S be a set of 3D points representing the scene.
We denote by A the set of all possible pointwise
correspondences between model and scene points, ie.,
A=MxS. Given a set of three correspondences e =
{(my, s1), (my, s3), (m3,s3)} C A, we compute the similarity
transformation 7" which minimizes the least-squares error
d(e) = Zlil |7 (my) — s> using the Horn method [50].
Consider now the hypergraph H = (A, &, ¢) where the set
of vertices is given by the set of correspondences 4, the set
of hyperedges £ consists of subsets of A of cardinality 3,
and ¢(e) is the edge-weight function defined as
¢(e) = exp(—Bd(e)*), where 3 > 0 is a precision parameter.
Intuitively, the function ¢(e) can be regarded as a
compatibility function encoding the likelihood of the corre-
spondences in e to be related by the same similarity
transformation. According to our framework, an ESS-
cluster C of H is a subset of correspondences in A
exhibiting both internal coherence and external incoher-
ence. Therefore, all correspondences in C' are mutually
highly compatible. This, by definition of ¢, implies that all
correspondences in C' are related by the same similarity
transformation between the model and the scene. Hence, C
is a good candidate for being a potential match (i.e., a set of
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Fig. 4. Results of clustering three, four, and five planes through the origin perturbed with increasing levels of Gaussian local noise
(0 =0,0.01,0.02,0.04,0.08). (a) Example of three 3D planes, perturbed with o = 0.01. (b) Two planes. (c) Three planes. (d) Four planes.

correspondences) providing a detection of the model in the
scene, which is invariant to a similarity transformation. This
motivates the use of our game-theoretic approach in order
to address this matching problem from a clustering
perspective. Note that this problem is particularly challen-
ging, for only a small fraction of the correspondences in A
will be part of a solution, the rest being outliers. Indeed, for
example, if we consider a scene S containing any number of
distinct instances of a model M, then only a small share of
at most | M| ™" correspondences appearing in A do belong to
the solution.

We tested our approach on different artificial datasets.
Each dataset is characterized by a reference model
consisting of 30 random 3D points and a scene which
contains up to three instances of the model. Each model
instance in the scene is equivalent to the original one
modulo a random similarity transformation. Moreover, a
random subset of points of each copy of the model has
been dropped (0-20 percent of points) in order to introduce
structural noise. Consistently with the previous experi-
ments, we considered two types of settings to assess the
robustness of the algorithms to local and global noise. In
the first set, we employed a Gaussian perturbation of the
points in the scene, whereas in the second one 3D points
(clutter points) were randomly added to the scene. For each
different combination of number of model instances, noise
type and noise level we generated 20 random datasets. We

refer to Figs. 6a and 7a for examples of datasets with three
model instances affected by local and global noise,
respectively.

The hypergraphs we got in the various experimental
settings were considerably large. Indeed, the number of
vertices (i.e., potential correspondences) varied between
1,000 and 5,000 and the number of edges (i.e., triplets of
correspondences) ranged approximately between 10° and
10, In order to reduce the size of the edge set, we adopted
a sampling strategy aimed at efficiently excluding triplets
that cannot belong to a good match. This allowed us to limit
the number of edges to a maximum number of 25,000 edges.

The evaluation protocol used to assess the quality of the
results is given as follows: First, we clustered the hyper-
graphs, thus obtaining a set of potential matches. Then, by
means of the Horn method, we estimated a similarity
transformation from the pointwise correspondences in each
cluster. This yielded a set of m transformations {7}].,,
which were used to determine the correspondences
between the scene points and the model points according
to the projection error. Specifically, let d;;x = ||T:(m;) — s;|
be the distance between scene point s; and model point m;
mapped according to transformation 7; and consider
(j*,t") € arg min(;d;;. Then we decided to leave scene
point s; unassigned if d; -+ > 7 (i.e., the point did not belong
to the model) for some fixed threshold 7 > 0, while it was
assigned to point m; otherwise. Let R C A be the set of
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Fig. 6. Results of the experiments on model-based 3D point-pattern matching with one, two, and three model instances perturbed with increasing
levels of Gaussian local noise (¢ = 0,0.001, 0.002,0.004, 0.008). (a) Example of a model-based 3D point-pattern matching problem instance with three
model instances perturbed with & = 0.004. (b) Results obtained by our approach. Note that CAVERAGE and SNTF, which do not appear in the plots,

obtained recall below 10 percent.

assignments obtained according to this procedure and let
G C A be the set of ground-truth assignments of scene
points to model points. We evaluated the quality of the

obtained result in terms of the share of ground-truth
assignments that have been correctly recovered (recall),

ie, [GNR|/|GI.
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Fig. 7. Results of the experiments on model-based 3D point-pattern matching with one, two, and three object instances with a level of Gaussian local
noise of o = 0.001 and increasing number of clutter points (0, 10, 20, 40). (a) Example of a model-based 3D point-pattern matching problem instance
with 40 clutter points. (b) Results obtained by our approach. Note that CAVERAGE and SNTF, which do not appear in the plots, obtained recall below

10 percent.

In the following, we report only the results obtained by
our approach because the competitors CAVERAGE and
SNTF were unable to provide a meaningful solution (recall
below 10 percent). In fact, this is not surprising because the
structure of the clustering problem arising from this
application is characterized by an amount of wrong
correspondences in A (outliers) that is considerably larger
than the number of correct correspondences and, as
demonstrated also by the previous series of experiments,
partition-based approaches like CAVERAGE and SNTF are
highly sensitive to outliers. As a consequence, the
similarity transformations computed from the noisy
clusters found by these approaches did not correspond to
any mapping between the model and the scene. Our
approach, on the other hand, was very robust to this kind
of global noise and was thus able to perform considerably
well also in challenging situations like the ones addressed
for this experiment.

In Fig. 6, we report the average recall and standard
deviations obtained by our approach on the experiments
with increasing level of local Gaussian noise (¢ = 0,0.001,
0.002,0.004, 0.008). As experienced in previous sections, our
approach achieves good scores, which slightly drop at
increasing levels of noise. Indeed, larger perturbations of
the points in the scene prevent the clustering approach from
finding a correct similarity transformation and therefore
some points in the scene are erroneously considered as
clutter points. We also note that the drop in the perfor-
mance is sharper in case of datasets with three model
instances. This is due to the fact that three models in the
scene lead to a higher density of points and, hence, wrong
assignments enforced by the local noise are more likely to
happen. Additionally, the edge sampling procedure men-
tioned above lead to less accurate hypergraph representa-
tions in case of datasets with a large number of points.

In Fig. 7, we report the results obtained by our approach
with a fixed level of o = 0.001 local Gaussian noise and with
an increasing level of global noise, expressed in terms of
0, 10, 20, 40 clutter points. The obtained results confirm the
robustness of our approach to clutter points. Indeed,
independently from the noise level and the number of
model instances, we achieve an almost constant perfor-
mance between 97-100 percent.

5.4 Illluminant-Invariant Face Clustering

In [51], it has been shown that images of a Lambertian
object illuminated by a point light source lie in a 3D
subspace. According to this result, if we assume that four
images of a face form the columns of a matrix, then d =
s3/(s+---+s%) provides us with a measure of dissim-
ilarity, s; being the ith singular value of this matrix.
Following [2], we used this dissimilarity measure for
clustering faces in high-dimensional space. We tested our
algorithm and its competitors over the Yale Face Database B
and its extended version [52], [53], which contained faces of
38 individuals under 64 different illumination conditions.
Specifically, we considered subsets of faces from four and
five randomly drawn individuals (10 faces per individual),
with and without outlier faces. The case with outliers
consisted in 10 additional faces taken from as many random
individuals. For each such combination, we created
10 different subsets (see Fig. 8 for an example with four
individuals and outlier faces). Similarly to the case of line
clustering, we run both CAVERAGE and SNTF with values
of Ke{K*—-1,K*K*+ 1}, where K* is the correct
number of individuals.

Table 1 reports the results obtained by the three
approaches in terms of classification error (mean and
standard deviation). The results are consistent with those
obtained in the case of line and plane clustering with the
exception of SNTF, which performed worse than the other



ROTA BULO AND PELILLO: A GAME-THEORETIC APPROACH TO HYPERGRAPH CLUSTERING

Fig. 8. Example of dataset for illuminant-invariante face clustering with
four individuals (first four rows) and 10 outlier faces (last row).

approaches. On the other hand, our algorithm and (the
optimal-tuned) CAVERAGE performed comparably well
within the no-outlier setting, while our approach dramati-
cally outperformed the other algorithms in the cases
comprising outliers.

It would be interesting to address within our framework
the following application which was suggested by one of the
reviewers: Given a query image I, find the (ESS-)cluster(s)
which contains /. To this end, a simple approach could be to
start the Baum-Eagon dynamics from a neighborhood of a
given image, namely, from an initial distribution which
peaks on a target image instead of starting from the uniform
distribution (the simplex barycenter), and then test whether,
upon convergence, the algorithm eventually extracts a
cluster which contains the target image. However, we note
that by using the procedure suggested above there is no
theoretical guarantee that the support of the converged
solution will contain the query image, especially when the
basins of attraction of other ESS-clusters (not containing it)
are large enough to attract the dynamics somewhere else.
We performed several experiments to see what happens in
practice and the results confirmed our original concern. A
different strategy would consist of adding extra constraints
to the original optimization problem in order to force the
query image to belong to the support of the solution found.
The problem here is that by modifying the feasible set of the
optimization problem we most likely change the structure
of the solution space, in which case there is no guarantee
that the solutions of the modified problem are also solutions
of the original one (i.e., ESS-clusters). This observation was
in fact confirmed empirically on our image dataset. Hence, it
appears that the problem cannot be dealt with using simple-
minded arguments but requires instead a more formal
treatment and possibly a nontrivial modification of our
approach. This would go well beyond the scope of the
present paper and we plan to address this issue in our
future work.

6 CONCLUSION

In this paper, we offered a game-theoretic perspective to
the hypergraph clustering problem. Within our framework
the clustering problem is viewed as a multiplayer
noncooperative game, and classical equilibrium notions
from evolutionary game theory turn out to provide a
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TABLE 1
Experiments on llluminant-Invariant Face Clustering
n. of classes: 4 5
n. of outliers: 0 10 0 10
CAVERAGE K=3 || 0.26:£0.09 | 0.40+0.10 - -
CAVERAGE K=4 || 0.03+0.04 | 0.24:£0.07 || 0.2140.11 | 0.6540.12
CAVERAGE K=5 || 0.13+£0.05 | 0.12+0.05 || 0.0740.07 | 0.4140.09
CAVERAGE K=6 - - 0.13£0.08 | 0.3740.11
SNTF K=3 || 0.2940.10 | 0.39+0.09 - -
SNTE K=4 || 0.14:£0.06 | 0.2640.09 || 0.284+0.11 | 0.51+£0.12
SNTE K=5 || 0.1940.09 | 0.2540.13 || 0.11+0.09 | 0.43+0.11
SNTE K=6 - - 0.144+0.09 | 0.39+0.13
HoCluGame || 0.0640.03 | 0.0740.02 || 0.06-:0.02 | 0.07-+0.03

We report the average classification error and the corresponding
standard deviation.

natural formalization of the very notion of a cluster. We
showed that the problem of finding these equilibria
(clusters) is equivalent to solving a polynomial optimiza-
tion problem with linear constraints, which we solve using
high-order replicator dynamics based on the Baum-Eagon
inequality. An advantage of our approach over traditional
techniques is independence from the number of clusters,
which is indeed an intrinsic characteristic of the input data,
and robustness against clutter, which is especially useful
when solving figure-ground-like grouping or one-class
clustering problems. We also mention, as a potential
positive feature of the proposed approach, the possibility
of finding overlapping clusters (e.g., along the lines
presented in [42]), although in this paper we have not
explicitly dealt with this problem. The experimental results
show the superiority of our approach over the state of the
art in terms of quality of solution. We are currently
studying alternatives to the replicator dynamics in order to
improve efficiency (e.g., [45]). We finally note that, inspired
by our work in [24], in a recent paper a parameterized
version of our framework was introduced which allows
one to control the minimum cluster size [54].
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